MathExcel Worksheet K: Review for Exam III

1. Rewrite the following limits as definite integrals:
(a) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(2+\frac{i}{n}\right) e^{\left(2+\frac{i}{n}\right)} \cdot \frac{1}{n}\right]$
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(2+\frac{3 i}{n}\right) e^{\left(2+\frac{3 i}{n}\right)} \cdot \frac{3}{n}\right]$
(c) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\sqrt{5-\left(3+\frac{2 i}{n}\right)^{2}} \cdot \frac{2}{n}\right]$
2. Recall the following formulas:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Recall that R_{n} denotes the $n^{t h}$ right-endpoint approximation of the area under the graph of $f(x)$ and that $R_{n}=\Delta x \sum_{i=1}^{n} f(a+i \Delta x)$, where $\Delta x=\frac{b-a}{n}$.
(a) Find R_{4} for the function $f(x)=x^{2}+2 x$ on the interval $[1,3]$.
(b) Find a formula for R_{n} for any n for the function $f(x)=x^{2}+2 x$ on the interval $[1,3]$.
(c) Find $\lim _{n \rightarrow \infty} R_{n}$.
3. Find the most general antiderivative of $4 x^{3}+2 x^{-1}+e^{x}-\cos x-\sin x+2$.
4. Knowing $\int_{0}^{2} f(x) d x=3, \int_{2}^{5} 2 f(x) d x=4, \int_{0}^{2} g(x) d x=1, \int_{0}^{5} \frac{g(x)}{6} d x=18$, compute the following definite integrals.
(a) $\int_{0}^{5} f(x) d x$
(d) $\int_{0}^{2}[f(x)+g(x)] d x$
(b) $\int_{0}^{5} g(x) d x$
(e) $\int_{2}^{5}[2 f(x)+3 g(x)] d x$
(c) $\int_{5}^{0} f(x) d x$
(f) $\int_{2}^{0} 7 f(x) d x+\int_{2}^{5} g(x) d x$
5. Let $f^{\prime \prime}(x)=6 x+3-\frac{2}{x^{3}}$, and $f^{\prime}(1)=1$ and $f(1)=0$. Find $f^{\prime}(x)$ and $f(x)$.
6. Use L'Hopital's Rule to find the limits below:
(a) $\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}$
(b) $\lim _{x \rightarrow-\infty} 2 x \cdot e^{x}$
(c) $\lim _{x \rightarrow a} \frac{x^{2}-a(3 x-2 a)}{x^{2}-a^{2}}$
(d) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\ln x}$
7. Find the point on the line $y=x+3$ closest to the point $(3,0)$. Be sure to explain why the point you found gives the minimum distance.
8. Determine all numbers c which satisfy the conclusions of the Mean Value Theorem for $f(x)=x^{3}+2 x^{2}-x$ on the interval $[-1,2]$.
9. Given the function:

$$
f(x)=-\frac{1}{3} x^{3}+\frac{3}{2} x^{2}-2 x+5
$$

(a) Find the critical points of $f(x)$.
(b) State the First and Second Derivative Tests. Find the interval(s) where the graph of $f(x)$ is increasing and the interval(s) where the graph of $f(x)$ is decreasing.
(c) Decide which of the points you found in part (a) are local maxima or minima of $f(x)$.
(d) Find the inflection points of $f(x)$.
(e) For the function above, find the interval(s) where the graph of $f(x)$ is concave up and the interval(s) where the graph of $f(x)$ is concave down.
10. Show that the polynomial $f(x)=4 x^{5}+x^{3}+7 x-24$ has at least one real root. Hint: Use the Intermediate Value Theorem.
11. Suppose that the amount of money in a bank account after t years is given by

$$
A(t)=2000-10 t \cdot e^{\left(5-\frac{t^{2}}{8}\right)}
$$

Determine the minimum and maximum amount of money in the account during the first 10 years that it is open.
12. If $f(2)=30$ and $f^{\prime}(x) \geq 4$ for $2 \leq x \leq 6$, how small can $f(6)$ be?
13. Suppose a sculptor can sell 15 statues at $\$ 500$ each, but for each additional statue she makes, the price goes down by $\$ 15$ (they are becoming less trendy). How many statues should she produce to maximize her revenue? What is her maximum revenue?
14. Consider the function $f(x)=x^{2}+3$. We are interested in the area A under the graph of $f(x)$ on the interval $[1,5]$.
(a) Divide the interval $[1,5]$ into n subintervals of equal length and write an expression for R_{n}, the sum that represents the right-endpoint approximation of the area A.
(b) Use the formula $\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}$ to find a closed expression for R_{n}.
(c) Take the appropriate limit of R_{n} to find an exact value for the area A.
15. Suppose that an object is fired downward, with an unknown velocity, from a plane flying at $10,700 \mathrm{~m}$. If the object strikes the ground 35 seconds later, with what velocity was the object fired?
16. Identify each of the following as true or false.
(a) A point in the domain of f where $f^{\prime}(x)$ does not exist is a critical point.
(b) Every continuous function on a closed interval will have an absolute minimum and an absolute maximum.
(c) If $f^{\prime}(c)=0, f$ will have either a local maximum or a local minimum at c.
(d) An inflection point is an ordered pair.
(e) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ then c is a local minimum.
(f) If $f^{\prime \prime}(c)=0$ in the second derivative test, we must use some other method to determine if c is a local \max or min.
(g) A continuous function on $[a, b]$ will always have a local max or min at its endpoints.

